Package: TAD 1.0.0

TAD: Realize the Trait Abundance Distribution

This analytical framework is based on an analysis of the shape of the trait abundance distributions to better understand community assembly processes, and predict community dynamics under environmental changes. This framework mobilized a study of the relationship between the moments describing the shape of the distributions: the skewness and the kurtosis (SKR). The SKR allows the identification of commonalities in the shape of trait distributions across contrasting communities. Derived from the SKR, we developed mathematical parameters that summarise the complex pattern of distributions by assessing (i) the R², (ii) the Y-intercept, (iii) the slope, (iv) the functional stability of community (TADstab), and, (v) the distance from specific distribution families (i.e., the distance from the skew-uniform family a limit to the highest degree of evenness: TADeve).

Authors:Nathan Rondeau [aut], Yoann Le Bagousse-Pinguet [aut], Raphael Martin [aut], Lain Pavot [aut, cre], Pierre Liancourt [aut], Nicolas Gross [aut], INRAe/UREP [cph]

TAD_1.0.0.tar.gz
TAD_1.0.0.zip(r-4.5)TAD_1.0.0.zip(r-4.4)TAD_1.0.0.zip(r-4.3)
TAD_1.0.0.tgz(r-4.4-any)TAD_1.0.0.tgz(r-4.3-any)
TAD_1.0.0.tar.gz(r-4.5-noble)TAD_1.0.0.tar.gz(r-4.4-noble)
TAD_1.0.0.tgz(r-4.4-emscripten)TAD_1.0.0.tgz(r-4.3-emscripten)
TAD.pdf |TAD.html
TAD/json (API)
NEWS

# Install 'TAD' in R:
install.packages('TAD', repos = c('https://lain-inrae.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

On CRAN:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

2.60 score 18 exports 11 dependencies

Last updated 28 days agofrom:1821aa6069. Checks:OK: 7. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 29 2024
R-4.5-winOKNov 29 2024
R-4.5-linuxOKNov 29 2024
R-4.4-winOKNov 29 2024
R-4.4-macOKNov 29 2024
R-4.3-winOKNov 29 2024
R-4.3-macOKNov 29 2024

Exports:CONSTANTSgenerate_random_matrixlaunch_analysis_tadload_abundance_dataframeload_stat_skr_paramload_statistics_per_obsload_statistics_per_randomload_weighted_momentsmoments_graphnull_model_distribution_statssave_abundance_dataframesave_stat_skr_paramsave_statistics_per_obssave_statistics_per_randomsave_weighted_momentsskr_graphskr_param_graphweighted_mvsk

Dependencies:codetoolsdigestdoFutureforeachfuturefuture.applyglobalsiteratorslistenvmblmparallelly

Best strategy

Rendered frombest-strategy.Rmdusingknitr::rmarkdownon Nov 29 2024.

Last update: 2024-11-28
Started: 2024-11-28

Get outputs in different formats

Rendered fromoutput-different-formats.Rmdusingknitr::rmarkdownon Nov 29 2024.

Last update: 2024-11-28
Started: 2024-11-28

graph-outputs

Rendered fromgraph-outputs.Rmdusingknitr::rmarkdownon Nov 29 2024.

Last update: 2024-11-28
Started: 2024-11-28

Multiprocessing and single-core processing

Rendered fromgeneral-use-of-tad.Rmdusingknitr::rmarkdownon Nov 29 2024.

Last update: 2024-11-28
Started: 2024-11-28

Readme and manuals

Help Manual

Help pageTopics
The CONSTANTS constantCONSTANTS
Generate random matrixgenerate_random_matrix
Launch the analysislaunch_analysis_tad
load_abundance_dataframeload_abundance_dataframe
load_stat_skr_paramload_stat_skr_param
load_statistics_per_obsload_statistics_per_obs
load_statistics_per_randomload_statistics_per_random
load_weighted_momentsload_weighted_moments
moments_graphmoments_graph
Compare a value to random valuesnull_model_distribution_stats
save_abundance_dataframesave_abundance_dataframe
save_stat_skr_paramsave_stat_skr_param
save_statistics_per_obssave_statistics_per_obs
save_statistics_per_randomsave_statistics_per_random
save_weighted_momentssave_weighted_moments
skr_graphskr_graph
skr_param_graphskr_param_graph
Compute the weighted mean, variance, skewness and kurtosisweighted_mvsk